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SUMMARY

The semiempirical method of dealing with shields by treating them
as composed of layers is revised and extended by taking the angular dis-
tribution of the radiastion into account and by making use of the trans-
port equation. It is shown that breaking up the ranges of direction
and energy of radiation into finite intervals is appropriate where mul-
tiple scattering with angular deviation does not dominate, and a pro-
cedure is given for using data referring to very thin layers to calculate
the parameters for finite layers in this case. In the contrary case
vhere multiple elastic scattering is dominant, it is shown that the num-
ber of unknowns to be considered is decreased if the angular distribution
1s represented by an gppropriate expansion in terms of ILegendre poly-
nomlals and the T.aplace transformation of the coefficients is taken with
respect to energy. The method is illustrated by consideration of the
effect upon neutrons of a thick nonsbsorbing shield of high atomic weight.
The physical significance of the new variables thus introduced is
determined.

INTRODUCTION

Shielding is accomplished by interposing a material barrier between
a source of radigtion and the region to be protected. In passing through
the shield, the particles meking up the radiation (which may contain
particles of zero mass such as photons) uhdergo collisions with the
atoms of the shield. In a given collision, a particle may lose some
portion of its energy while simultaneously changing direction and may
also generate new particles. The probability of a particular type of
collision depends upon the energy of the particle before the collision
and, hence, upon its past history; the number of collisions a particle
undergoes within the shield depends upon its length of path in the
shield and, hence, on its original energy and the geometry of its tra-
Jectory. In general, therefore, the particles leaving the shield will
be of several types and will cover a large range of energies and direc-
tions. The complexity of the problem makes the solution of the mathe-
matical equation governing the travel of the particles through the
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shield (the transport equation) quite difficult. However, the large
number of possible processes makes the use of composite shields seem
particularly promising. For example, the first section of a shield
might slow the particles down sufficiently that the second section could
gbsorb them. This means that to find the most efficient shield for a
given source many combinations of materials must be congidered. Because
of the difficulties of calculation, direct measurement seems the proper
procedure for comparing these combinetions, but to try all the possi-
bilities would require a large volume of experimentation.

Tn order to avoid both the need for elsborate computation and for
large-scale experimentation, Bobrowsky (reference l) proposed a method
(herein designated as semiempiricel) for predicting the effectiveness
of composite shields on the basis of actual measurements made upon a
relatively small number of homogeneous shields. The basic idea pre-
sented in reference 1 is to treat the shield the effect of which is to
be computed as being built up of a number of layers or elements upon
each of which the required measurements of shielding effectiveness have
been made. The results of such measurements serve to relate the distri-
bution in direction, energy, and surface position of the particles leav-
ing any element to the distribution in direction, energy, and surface
position of those entering the element. If the individual elements are
combined to form a composite shield, the same relations as before hold
between the distribution of particles entering a particular element and
the distribution of those leaving that element. Except for the front
face of the first element and the back face of the last element, however,
the incident fluxes are unknown. Thus, in the case of n elements and
p species of particles, there are 2np unknown functions describing
the emergent fluxes, one for each species of particle at each of the
two faces of each element. When these fluxes are connected with one
another and with the incident flux, there result 2np integral equa-
tions which are, however, of a relatively simple structure.

Briefly, the procedure which has been used by Bobrowsky is to
approximate the integrals in question by appropriate sums, usually
with the additional assumption that the incident flux is independent
of surface position. The intensity is thus no longer expressed in
terms of a function of direction and energy but instead is expressed
in terms of a set of nmumbers, each of which is the average value of the
intensity within the asppropriate range of. energy and of angle. (Actu-
ally, Bobrowsky suppressed the angular dependence by assuming all
particles to travel in a single direction.) Thus, the set of integral
equations in the unknown intensity functions is replaced by a set of
ordinary algebraic equations in the intensity numbers. The solution
of these can be accomplished by ordinary methods. In practice, however,
the computation mey be quite tedious because of the large number of
unknowns involved; in addition, the amount of experimental data required
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may still be excessive. This is especially the case if considerable
accuracy is desired and, comsequently, the intervels of angle and
energy are narrov.

The present work, which was conducted at the NACA ILewis laboratory,
is directed toward extending end simplifying the semiempirical method.
The first step toward accomplishing these objectives is the determina-
tion of approximate solutions of the transport equation for two special
conditions: first, that in which multiple elastic scattering dominates;
and. second, that in which the role of multiple scattering with change
in direction is small compared with other effects. The results obtained
serve three purposes: (l) They demonstrate the importance of taking
into account the direction of motion of the particles; (2) they provide
a means for calculating the effect of any element which is not too thick
and in which multiple elastic scattering is not too important an effect,
from the results of measurements on an infinitesimal element of the same
material} and (3) they suggest a way of simplifying the computations
necessary in the application of the semiempirical method.

In order to generalize this method to include the effects of angular
dependence and to achieve the simplificatlon mentioned, the integral
equations displaylng the angular dependence of the intensity are first
written down. These equations are to be treated by epproximating the
Integrals by sums and solving the resulting algebraic equetions. This
replacement may be accomplished by writing each unknown intensity func-
tion as the sum of a serlies of terms, each term being the product of an
unknown constant coefficient and a known function of the appropriate
variables. If this representation is substituted into the original
equations, the integrations mey be performed at once, and a set of equa-
tions in the unknown coefficients results. Knowledge of the approximate
solutions of the transport equatlion mekes it possible to choose the
known functions in such a way that all but a few of the terms in each of
the equations so obtained are small; the resulting equations are there-
fore amenable to solution by successive approximstion. After the coef-
ficients are obtained, the intensities may be found by summing the
eppropriate series. It is shown, however, that the coefficlents them-
selves contain information of considerable physical significance; for
some purposes, it may be sufficient to know the coefficients in order
to estimate the usefulness of the shield.

ANATYSTS
Assumptions

In each case it is assumed that the following conditions hold:

(1) The elements are homogeneous slabs of finite thickness with
infinite plane parallel surfaces.
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(2) Wo new particles are produced by collisions,
(3) The system is in a steady state.

(4) The incident rediation is uniform over the surface and inde-
pendent of the angle measured around the normal but not necessarily
independent of the angle it makes with this normal.

(5) A1l sources are external to the elements.

Conditions (1) and (4) are essential to the type of analysis employed
here because they represent restrictions on the geometrical aspects of
the problem which make the resulting system of equations relatively
tractable. The requirement with regard to angular distribution contained
in condition (4) is fulfilled if the sources are disposed in a uniform
menner with respect to the shield. The assumptions contained in con-
ditions (2), (3), and (5) are not essential but are introduced primarily
to avoid complications in the analysis which would obscure the ideas
presented herein. In particular, reference 1 deals with the case in
which condition (2) does not hold and reference 2 deals with the case
in which conditions (2), (3), and (5) do not hold.

The Individual Element

The procedure to be followed in simplifying the application of the
semiempirical method is to determine the way in which the particles
traverse a single element and to deduce from the results obtained an
appropriate representation for use in this method. More explicitly,
the representation sought is in each case to be obtained from an epproxi-
mete solution of the transport equation valid under certain general
assumptions about the nature of the element. The two cases to be con-
gidered are that in which scabtering dominates and an expansion in terms
of Legendre polynomials is appropriate (approach l) and that in which
absorption dominates end iteration is appropriste (approach 2). It is
to be emphasized that the expansions thus obtained are applicable in
general but are most convenient under the circumstances stated.

Approach l: Expansion in Iegendre polynomiasls. - In this section
the transport equation is transformed by expressing the dependenge on
energy in terms of a new varigble 1 by a Laplace transformation and
by representing the angular dependence in terms of an expansion in
Legendre polynomisgls. It will be shown that for elastic scattering
the introduction of 1 simplifies the equations considerasbly, that
the use of Legendre polynomisals is well adapted to the boundary con-
ditions, and that in the case of multiple scattering only a few terms
of the expansion need be retained. The need for including anguler
dependence 8lso becomes obvious.
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The starting point of this discussion is the form of the transport
equation given by Marshsk (reference 3, equation (63); see also appen-
dix B of this repor‘t) here specialized to the time-independent and
surface-position-independent case with no intermal sources:

Ma)p a—“’ﬁ;—“——l + ¥(u,u,2) =

\I; du'k[\dg'w(u’,u',Z) f(uo,u—u') h(u') (1)

All symbols are defined in appendix A.

Because ¥ does not depend upon ¢, the right side of equation (l)
can be integrated over ¢' I1mmediately so that it becomes

18
L[1 du? L[‘z dut Py (pyptyu-ut )y (u’ 1t ,z)h(u’) (2)
0 -

o1

where

£ (mutuut) = [ 2(ug,u-u’) dot (3)
0

Equation (l) may be further simplified by teking its ILaplace trans-
form with respect to u. If, for purposes of simplicity, it is assumed
that A(u) and h(u) are constant, then it is possible to put A(u)=1
(this amounts to a change in the choice of units for A constant) and
h(u)=1 (this amounts to a change in the way f is normalized for con-
stant h); with these changes the equation becomes (see reference 3,
equation (17))

L
0®(z
p BN g ) - | R 8 () (4
where & and F are defined by
s(znm) = | aw e Wylwmn) (5)

0

and
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o«

FGuutn) = | awe™™ 2y (uut,ur) (6)
0

respectively. In equation (4) the integration over u' has been per-
formed by meking use of the fact that u' enters £y only through
u-u'. The extension to the case where A and h- are not constant is
immediate (reference 3, equation (80)). It is only necessary to expand
each of these quantities in a power series in BE:

; » 4 =2 By emdu (7)
h=z hy EJ=ZHJ e Ju (8)

J J

>
Il

where the quantities Aj and Hj are constants and the Jj's represent ~

some set of numbers of either sign which may be, but are not necessarily,
integers. These expansions need contain only a few terms if A and

h do not vary too fast with wuw. The representation given is not very
adequate if resonance is marked; but the error is not serious for a
narrow resonance band because the chance of a particle attaining an
energy within such a band is small. If equations (7) and (8) are sub-
stituted in equation (1) and the Laplace transform is obtained, equa-
tion (1) becomes

+@ (z,m,u) =

. ZJ:AJ a‘i’fzé;l‘*JzM

1
Z Hy dut F(u,nt,n) @ (z,n+3,n") (9)
J -1

It is to be emphasized that the validity of equation (9) depends
upon the assumption that uw and u' enter £ only through the com-
bination u-u'. This restriction on f£;, while not necessarily always
holding, is correct in many cases of physical significance (reference 3,
P. 186), for exsmple, whenever the scattering can be represented as a
classical collision between the incident particle and a free particle
at rest. The same result holds in quanbum mechanics for the case of
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so-called S-wave scattering, that is, the case when the "wavelength" of
the incident particle is great compared with the range of the scattering
force. In the general case, the functlon £ can be written in the
form

£y = £p(u-ut,ut) (10)

go that the treatment of this case can be extended by expanding f£3; in

- 1
a series in e Ju Just as was done in the case where. h(u) was not

constant.

In order to complete the formulation of the problem, it is neces-
sary to specify the boundary conditions. This may be done quite simply
as follows. ILet 2z=0 represent the face upon which the radiation is
incident and let 2z=2 represent the opposite face. Then the condi-
tions in question are

A(n,p) p>0

it

@(Z:ﬂ,u)i A
(11)

&(z,m,u) . 0 L<o

z=7

The quantity A(n,p) is here an arbitrary known function of the
appropriate variebles. Physically, these equations mean that the flux
incident upon the front face of the element is known while the flux
incident upon the back face is zero. An individusl element of the shield
is shown in the following diagram:

CI’(Z:T])FL) = 0
for 4 <0

Q’(O,T],p.) = A(n:IJ-)
for >0

z=0 z=2
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Equations (4) as they stand are still integral equations with respect
to p as well as differentisl equations with respect to z. It is
desirable to transform from this set of integro-differential equations
to a (infinite) set of ordinary linear differential equations. This
can be simply done if & and F are expanded in terms of complete set
of orthogonal functions of p. Marshek (reference 3, equation (65a))
used for thls purpose the set of Legendre polynomials of u. For the
present problem this is inconvenient because the boundsry conditions
(equation (ll)z impose a sharp distinction between forward (p > 0)
and backward (p < 0) directions. It is therefore natural to meke use
rather of an expansion in which this dichotomy is reflected in the
expansion of the function & in terms of the varigdble p. A procedure
in which this is accomplished and in which some of the advantages of
the use of the Legendre polynomials are retained is based on the use
of the representation:

r @
Z (2041)0} (n,2)P (28-1) & >0
n=0

8(z,mym) = (12)

) (zma)ep(n,z2)e(-21)  n <o
kn:o

The + and - superscripts on the expansion coefficients ¢
indicate, of course, that they are associated, respectively, with posi-
tive and negative values of p and hence with forward and backward
directions. The coefficients have thus a significance different from
that to be associated with the usual expansion in terms of Legendre
polynomials (reference 4). It is to be emphasized, however, that the
number of nodes of the Legendre polynomial of degree n increases as
n increases; and, hence; the larger is n, the greater is the degree
of angular assymetry to be associated with ?,- It will be advantageous
for future work to define

Pp(2e-1) O<p<1

I

P! (2u-1) (13)

(0] otherwise

and
P (-2u-1) -1 <p<0
Po(-2p-1)

]

(0] otherwise

9822
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With this definition & may be written

d = Z {(2n+l) q>;;('q,z)P;(2u-l) + cpi(n,z)PI_l(-Zu-l)]} (14)

n=0

It is to be noted that two P's Ffor which the n's and the super-
scripts are not both identical are orthogonal. This is one of the chief
advantages of the expansion. Because of the isotropy of the element, it
is assumed that f depends on 6 and 6' only through lpol and,
therefore, F may be written in'terms of these functions as

F =) (ensl) {fE:E?;(Zp-l)P;x(Zp'-l) + P;(-Zp-l)P;,(-zp-l)] +
£Eo [Pﬁ(&x-l)P;. (-2u'-1) + P;(-2u-1)Pf, (Zu'-l)}
(15)

This equation serves to define the expansion coefficients f. (These
coefficients have the property that fn,n' = f,1 ,-) When equations (14)

end (15) are substituted into the right side of equation (4), there results

B —g% + & = nzn'(anﬂ) {fn““g,[cp}l?g(m-l) + (pI_l,PI'l(_gp_l):, +
2
f;:[wg,P;(-Zu-l) + CP;,P;(Zu—l)]} (16)

where use 1s' made again of the properties of the ILegendre polynomials
(see reference 4). IF equation (16) is multiplied by P%(iZu-l) and.
the resulting equation integrated over the range -1 < p < 1, the fol-
lowing set of differential equations is obtained: -

+ + 3
1% 1% & ot ot gE L b o T
i?a_z—‘tig"”po_ o,m *m * *o,m %m
' ? 17
L1 aqji:h_l_nﬂ_ aq’iﬂ il n acpj-l +cp=h (17)
2 dz 2 2n+l dz 2 2n+l Oz n
k| - F
= Zf + £ ¢ n>0
= [nm Pm nm m] J
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To this set are to be appended the boundary conditions which here take
the simple form

cPZ.g.IZ=C) = An(n) (18)

q>r1|z=Z =0

where 2 is the thickness of the element and

+ .
A (n) = . P (2u-1) @ (z,mm)(, o dn

From the viewpoint of shielding, the problem is to find ¢, |,.o and

(D; =y, in terms of the A (n). Generally speaking, for lerge Z one

may expect these quantities to decrease as n Increases in the case
where there is 1little absorption because multiple scattering enhances
the symmetry. A simple illustration of this is given by the followling

example:

Example of approach 1: Scattering of neutrons by a thick "heavy
shield" without asbsorption. - When a neutron is scattered by an element
of relatively high atomic weight, the neutron loses very little energy
and the angular distribution of scattered neutrons is nearly uniform.
As an aspproximstion, the change in energy may be teken as zero and the
angular distribution as uniform so that F is constant. As it is
assumed that there is no absorption, ¥ 1is normslized in such a way
that

Fdue=1 (19)

(see equations (3) and (6) and equation (Al) in appendix A). Thus it
follows that, to the approximation teken here, F = % With the con-

sistent neglect of all ¢,'s for which n exceeds 1, the differential
equations (17) for ¢ become

+ +
oP oP
1 1 1 0 £ 1 £ 1 F
if—;i§7+¢o—§¢o+§¢o
. (20)
+ +
Ry 09y +

98¢2
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The boundary conditions are

- - h

®0z=z = P1|z=z = O
+

%lo=d @
+

¢l 2=0 Al ,J

The dependence on 1 1is suppressed because the value of @, for a
particular 1 1is not related to its value for any other 1. These
equations, being a set of linear differential equations with constant
coefficients, may be solved by the usuel methods. As remarked pre-
viously, the festure of interest here is the way in which the element
imposes angular uniformity upon the incident radiation when Z 1is large
compared with 1 (that is, with A). This effect is demonstrated in the
following spproximation to the solution in which all bubt leading terms
are omitted. With such an approximation, the result may be written as

%) am0 = B - (6-40/3) &y )
¢i z=0 = (7-44/3) Ay
(22)
0 ?
®0lz=z =
+
?1]p=z = O ~

The omitted terms are of the order of A, (or 4;) multiplied by 1/2.
Because & must be positive at 2z=0, it follows from equation (14)

that A must be less than one-third A,. If it is noted that 7-4«/3
is about 0.1 and -(6-44/3) is_about 0.9, it follows that ©7|,-o

is considerably smaller than ¢O|z=0' Because wa represents a uniform
emergent flux and ¢i is associated with radiation displaying a certain
degree of asymmetry, this confirms the assertion that the shield acts

to promote the uniformity of the radiation. If the next stage of the
calculation performed is employed by assuming that ¢, =0 for n >3
and substlituting the results of the present spproximetion into the
equations thus obtained for @, and @z, it follows that, in accord

with the original épproximation, these last are also small.

The requirement that there be no absorption is reflected in the
value of F. In particular, if the absorption were not zero, F would
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be less than 1/2 and ¢6 would be decreased in magnitude relative to
the asymmetric terms whose imporbtance would therefore increase. In
addition, for an element the constituents of which are of lower atomic
weight, the coefficients £, do not vanish for n' greater than
zero and they also vary with 1. The effect of this dependence is to
increase the number of scabtterings required to produce the same amount
of uniformity.

Under the heading of approach 1, a procedure has been developed for
dealing with an element in which scattering is the dominant effect. In
particular, it has been assumed that N and h are constant, or nearly
s0, and that the scatbtering process is of the S-wave type. Under these
circumstances it follows that an appropriate representation is in terms
of the intensity numbers @_(n). The expansion thus obtained takes
account of the sharp distinction between the forward and backward direc-
tions, gives explicit recognition to the expected effects of scattering
in producing angular uniformity by segregating terms implying different
degrees of angular asymmebry, and takes advantage of the simplification
resulting from the use of the Laplace transformation.

Approach 2: Iteration. - Although the expansion discussed in
approach 1 may be used in any problem, its practical sgpplication is
primerily found in those cases where there is elastic scattering and
where the element imposes & certain degree of angular uniformity upon
the emergent radiation. In the contrary case where the emergent radia-
tion retains essentially the nonuniformity of the incident flux or
where such nonuniformity is imposed, it is convenient to use a formalism
in which the intensity is expressed directly as a function of the angle
and the energy.

This will be the case if multiple scattering with change in direc-
tion is not an important process. The procedure used here is an iter-
ative one which again shows the importance of including angular depend-
ence and which permits direct solution of the transport equation for a
single element under the circumstances indicated.

The relevant transport equation with no scattering leading to
directional changes is (see appendix B)

m ﬂ‘gz—E—l + Q(E) ¥(E) = oy (B,E*) ¥(E') aE (23)

Here @Q is l/X and ql(E,E') dE dis the proportion of radigtion of
energy E! degraded inbto the range between E and E+dE. The func-
tion q; vanishes for E > E' (no gain of energy). It may be noted
that, as this equation stands, p enters only as a parameter. If V¥

is written as

2386
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W(E;P-:Z) = 0 T(E;Z:E') 1[!(E’,|J.,O) de* (24:)

equation (23) is satisfied if T fulfills the boundary condition
T(E,Q,E!') = 5(E-E') and the equation

p SEEED | ofm) 2(8,2,5) = | o (B,5") 2(8", 5,8) av"  (25)

E' and y are parameters in this equation.

An gpproximate solution of equation (25) may now be obtained by
the use of lteration. This approach 1s especially appropriate because
it includes as a speclal case the method of breasking the energy range
into intervals and replacing the integral on the right side by a sum
essentially employed in reference 1. In order to carry out the itera-
tion, T is expressed in the form

o«

T = Z p(3) (26)

=0
where T(j) satisfies the boundary conditign
o(3) (z,0,8') = 830 5(E-E') (27)

and represents the contribution to T of particles that have started
out with energy E' and have been scattered j +times. Tt follows that
T(j) is of the order of qlJ because the latter is essentially the

probability of J scatterings. Consequently, if equation (26) is sub-
stituted into equation (27) and terms of the same order in qy are equated,
there results

\

b BT(O)éf’Z’E') + (&) TO)(g,z,51) = 0

}

() e
p L (B2B) 4 o(m) 13 (g,2,m) =I ap (&,2) 2 en2 ) am
0

(28)
#o
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the solution of which, subject to the boundary condition (27), is
(appendix C)

-Q(e)-&

w(0)(®,2,8') = 8(z-E') e

(29)

/\
e
S

—
5]
—
O
v
N
=
-~
[
~
~
)
t-'ﬂ
—
@
=
v
/'\
w
~r
~r
™
—_—

In case two of the Q's are equal, the expression is to be evalusted
by initially treating them as distinct, grouping all terms in which
thelr difference is contained in the denominstor, and then taking the
limit. In case the set of energies which the particle can lose upon
scabttering is discrete or in cdse the integral is approximated by a
sum, the function q; can be represented as a sum of & functions.
If this sum contains t +terms, then the series for T bregks off
after m(E), (This depends upon the fact that q;(E,E') dis zero for

E larger than E!.) -

A variation of the preceding treatment can be applied to the case
where there exists a scattering process which produces a change in both
direction and energy as well as the original process which affects only
the energy. In this case the differential equation may be written

(appendix B)

Enax
B OU(E,u,2) Q(E) ¥(E,p,z) = o q, (B,E') ¥(E',n,2) aB' +

oz
1 (Epgy
LJ; ao(E;u; E',pt) ¥(E',pt,2) dB' ap'  (30)

98¢2
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where qz(E,p;E',p') dE dp is the proportion of particles with energy E'
and direction p' scattered as a result of the second process so as to
heve energies in the range between E and E+dE and directions in the
range between P end pidp. Just as was done in equation (24), ¥ may
be expressed in the form

Y(E,u,2) = | |T(B,n,z;E%,1")¥(E,n,0) dB' ap' (31)
vhere T satisfies the boundary conditions

T(E,u,0;E,u') = 8(p-p') 8(E-E') p>0

(32)

T(E,u,2;E',p') =0 p<O

and. the equation

" OT(E,u,z;E,u')

3 + Q(E) T(B,u,z;E',u') =
VA

CJ.]_(E)E") T(E":PyziE':P-') dE" + ﬁz(E)P)E":H") T(E";P";ZiE':P') dE" ap”
(33)

If the second integral on the right side of equation (33) is small
in comparison with either the second term on the left side of equa-
tion (33) or the first integral on the right side of equation (33), then
the approximate solution (equation (29)) obtained for equation (255 mey
be adapted for use as the first approximation for T by applying the
boundary conditions (32). The resulting function, which may be denoted
as T(o)(E,u,z;E',u'), satisfies

-

" 7O (m,,2;8" jut)

oz + Q(E) -T—(O)(E)u;ziE':P') =

~(0
q, (E,E") o )(E",u,z;E',u') aE" (34)

and the boundary conditions

F(0) (5",1,0;E" ,u7) = 8(u-p') B(E-E') 1 >0

'T'(O)(E",p,z;E',u) =0 p<O0 -
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A better approximation is obtained by putting

7 =m0 + 7 (1) (35)

where T(o) is as before and T(l) satisfies the conditions

98¢2

T(l)(E,u,O;E;u') =0 p>0

7 (5,1,2;8,u1) =0 < o0

If equation (35) is substituted into equation (33) and if the product

1 (0
qu( is neglected in comparison with qu( ) , the following equation
is obtained for E—E'(l):

_(l) Tt t : ‘
w o (E’Jg;z’EJ“ L+ q(m) T (B,u,2500) =

ap (8,8") T (87,0, 2580 0t) aB" +
a4, (E,u;E",p") f(o) (E",n",z;E",u') AE" au" (36)
This equation in turn may be treated by iteration. If the symbol
S(E,n,2z;E',ut) = fqz(E,u E",p") _T_(O)(E",u",Z;E'u') aE" ap"

is introduced, a first approximstion to T(l), obtained by neglecting
the first integral on the right side, is given by

T (1,1
T( ’ )(E)lJ-:Z;E':P-') = A
zZ
% o [Q E m 'Z:I S(E,u,8;E,n') 4  for p >0 )
’ (37)

and. a

% exp [%E)éﬁ):] S(E,p,L3E',ut) 4 for p <O D

Z
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This may then be substituted into the first integral on the right side

of equation (36) and a better approximstion for T 1) btained. The
iteration may, of course, be continued along these general lines, but
its usefulness is, in general, greatly diminished as the length of the
process is lncreased. In any case, the early approximation will be good
if the contribution from the integral involving ds is not too large;
that is, if multiple scattering with angular deviation does not occur

to any great extent.

It is apparent that in the two cases considered (q2 small or

esgentially zero) the emergent flux will depend strongly on angle for
an element of reasonable thickness; indeed, for a sufficiently thick
absorber, it follows from the form of T(o) that this flux is mainly
concentrated within a cone of half-angle of order A/2/QZ where the
value of Q %o be used is & typical one. Consequently, an analysis
in which the angular dependence is given by specifying the amount of
radiation within each of a set of ranges into which p 1s divided is
appropriate.

The results obtained here serve to elucidate the case in which
scattering with angular deviation is not a very significant process so
that it may be treated as no more than a perturbation. An exasct solu-
tion 1s obtained by the iteratlion method for the case where the direc-
tion of motion of the particles is unchanged; but, unless Q and a3

have a particularly simple form, its application 1is obviously inconvenient
where there is much multiple scattering for the reason that, under such
circumstances, a large number of terms must be retalned in the series

for T. The process for dealing with the perturbing effects of scatter-
ing with angular deviation is described.

Semiempirical Method

The results of the previous section, entitled "Individual Element,"
find gpplicetion to the trestment of shields by a modi?ication of the
semiempirical method. In this formalism, a shield intercepting a flux
of particles is to be represented in the following fashion. Radiation
of an intensity independent of position on the face fglls upon the first
of a set of n plane parallel elements. As a result, there is incident
upon both faces of each element a flux of radiation; consequently, there
emerges from =ach face a certain quantity of radiation. Let Ji(E,u)

represent the number of particles with energy E and direction p per
unit range of E per unit range of p per unit time incident upon each

unit area of the i element. Similarly, let Ii(E,u) represent the
flux of radiation emergent from the ith element. The following dia-
gram depicts the ith element of the shield:

J




18

NACA TN 2647

Ji(E:l;l)
Ii(E;l-'-)

6 = cos~l B,

B >0 6 = cos™L ©,

Ii(E:P-) k=20

6 = cos™L , J; (E,n)
n<o

6 = cos™t B,
M<oO

Positive p indicates radiation Incident upon the front face, and neg-
ative p, that incident upon the rear face. For I, then, negative p
is associated with radiation leaving the front face end positive p,
that leaving the rear face. The manner in which the presence of the
element modifies the radiation is given by the equation

I (Bou) = | K (Be5my,8;) T4 (0y,B;) a8 duy (38)

Wwhere Ki(E,p;pi,Ei) dE dp represents the proportion of particles with
energy E; and direction By which is modified by the 1th  element

80 as to emerge with energy between E and E4+dJE and direction between
p and p4dp.

In addition, the I's and dJ's satisfy the following equations:

Ij_(EJP-) J1+1(E;I-'-) u>0
J;(Bm) = I, 4 (Bm) <o (39)

J(Bw) =0 <o

9822
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and I, (E,u) 4is known for p >0. It follows from symmetry considera-
tions that

K; (B,p3E; 50) = Ky (B, -p5Es -1y ) (40)

The previous set of equations is, as noted in the introduction, best
treated by some method of approximation. In reference 1 this was done
by replacing the integral by a sum; as shown previously (see remarks
following equation (37)), this is appropriate where the dominent proc-
esses are absorption and loss of energy without scattering.

However, in the case when elastic scatteriné 1ls of primary import-
ance, another procedure suggests itself (see Approach l). In this case
it is natural to expand I and J in terms of the polynomials

P:(*Zu-l) and to use the Laplace transforms of the coefficients so
obtained as the intensity numbers. This may be done by defining the

quantities
0 1 h
Ti(n) = f f Ph(ap-1) e 1 I;(E,u) dp am
Ernax\J 0

0
i (n) =f0 f Pr(-2p-1) e ™ I, (E,p) ap dE J
EpaxJ-1

with analogous expressions for J' and J~. In terms of these quanti-
ties, equations (38) and (39) become, respectively, when A\ is inde-
pendent of E and there is no absorption,

> (41)

N
Tin(n) =Z [k-_ELn'(n) Tini(n) + k;;n:(n) Tinx("lil

\ )
Iin(n) =Z l:k;’j,’n:(n) Tint(0) + Ko Ein.(n)] )

and

2—‘!

¥+
Tin(n) = J5g p(0)  i<n

T, = Taam  i<nx (43)
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vhere the quantities k++inn‘(n) end k_'j*'_an:(n) are defined by:

Kini(n) =

(2n'+1) f fj[“ Ph(ep-1)Pf. (2ny-1) e -na Ky (Byit,Bppysty) dp duy 4B
EpgxU 0 (

44)

-

and

K ' (n) =

0 1 N0
(2n'+1) f f f PF(2u-1)Pg s (-21g-1) e 1 Ky Bk, Bpayoiy) dn dpy AE
EnaxVOU-1

The equations here contain 1 only as a parameter; because the element
has the effect of producing a distribution of intensity nearly inde-
pendent of W, it should be sufficient to_consider only a few values

of n. In case the mean free path is not constant, the right side will
depend on other values of 1 besides the one appearing on the left
slde (see equation (7)). In this case, if the average rate of varia-
tion over a wide reglon is not too large, it is possible to apply suc-
cesgive approximation by first omitting these extra terms. If this is
Jmpractical, the best procedure is simply to expand I and J in
terms of Legendre polynomiels as before, but with the coefficients func-
tions of energy rather than of 1. The integrals may then be replaced
by sums as in reference 1.

Even in the case in which the expression in terms of the Laplace
transform expedites the solution, there remains the problem of inter—
preting the results obtained, which will give quantities like Iin ).
The corresponding function of u and p may be obtained by performing
the inverse Laplace transformation with regard to 17, multiplying the
resulting function of u by (2n+1)P}, and summing over n. Each of
these procedures, and particularly the first, is likely to be quite
tedious. It is therefore desireble to avoid the‘actual calculation;
and this may sometimes be done because, as the following considerstions
show, the quantities Ij, () +themselves contain considersble informa-
tion of physical significance. If the dependence on n and p is sup-

pressed, the relation between I and I is given by

(4

9e¢cz
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I(n) = A e”™ I(u) au (45)

Here I(u) may be taken as representing the rate of flow of particles
per unit area per unit time per unit range of u. In view of the con-
nection between u and E, I(n) mey be rewritten in the form

T(n) = fo m(-Ef;)n I(w) (46)

Thus, I(0) is the rate of flow of particles per unit area per
unlt time, EmaxI(l) is the average rete of flow of energy per unit area
per unit time, etc. The quantity I(n) therefore finds interpretation
In terms of particle current density, of energy current demsity, and of
the moments of the energy flow. If I(u) itself must be known, the
values of u of interest will usually be large because the important
question will be whether the particles have been sufficiently slowed
down to reach an gbsorption band in a succeeding element. In this case,
use mgy be made of known methods for approximating the inverse trans-
formation for large u (see reference 3, p. 204). If the dependence
on n and H 1is now considered, it follows in a similar fashion that
much may be deduced about the directional flow of particles directly
from I,. Thus the total current in the forward direction is (from
equation (46)):

0
f J‘l I(E,u)p dp dE
Enax VO

It 1s therefore possible to learn a good deal gbout the particle distri-
bution without tramsforming from the varisbles (m,n) to the vari-
gbles (u,E).

Z (2n+1) Ti(0) . P,(2u-1)u dp

%[fg(o) + _fif(oz-] (47)

Up to now, the results of the section "Individual Element" have
been considered from the viewpoint of their significance in the solution
of a problem involving a number of elements whose separate effects upon
the incident radiation have been determined experimentally. However,
the results obtained in approach 2 of that section may also be used to
determine, to a good approximation, the effect of a thin element of a
given material for which the constants assgociated with each possible
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process are known. The semiempirical method may then be used to obtain
the required data for thick shields. Because the term "thin", as used
herein, means only sufficiently thin that multiple scattering need not
be considered, it would appear that this procedure would provide a con-
venient and reasongbly flexible way of obtaining the needed constants
for a variety of elements.

CORCLUDING REMARKS

The problem of a layered shield consisting of a number of plane
parallel elements of infinite extent but arbitrary thickness has been
treated. By use of the transport equation, am explicit epproximsate
solution has been obtained for a single element for the case where mul-
tiple scattering with angular deviation is not dominant and the form
of the solution investigated in the case where multiple scattering with
angular deviation is the principal effect. In each case, an expansion
is given for the angular dependence which is well suited to the boundary
conditions of the problem and s rapidly convergent. It is pointed out
that the use of an expansion of this sort and of the Laplace transform
with regard to energy (where scattering with angular deviation is dom-
inant) should considerably reduce the laebor in a semiempirical treat-
ment of shielding. On the other hand, the semiempirical approach may
be used to extend the single scattering result to a thicker element
where multiple scattering is of importance.

Lewis Flight Propulsion Laboratory
Netional Advisory Committee for Aeronautics
Cleveland, Ohio, August 8, 1950
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

Ap(n)

A(n,p)
E

Bnax

F(I-I)P-'JT])

£1 (1,0 u-u')

£ (g, u-u')

fﬁ,(n)

expansion coefficient for A(n,n) in series

A(n,n) =Z% (2n+1)A, (n)P,(2p-1)

value of & &t z=0 for p >0
energy of a particle
maximm energy of any particle entering shield

Laplace transform with respect to u of f£q(p,u’,u)

25

= f(].lo)u-ul) d!P'
0]

proportion of particles with direction (6! ,cp‘) and
energy E' scattered through the angle © into the
direction (6,9) with energy E per unit solid angle
per unit range of u

expansion coefficient for expression of F in terms
of Pi(2u-1), Pfi(2u-1), P;(-2p-1), end P;.(-2u-1)
divided by (2n+l1)

coefficient of e 9% in expansion h(u) = Z Hjy e Ju

J

Aw)_

A ()

coetficient of E) in expamsion h(u) = ) hyE’
J .

number of particles per unit time per unit area leaving
ith element of shield with energy E and angle
cos_l B per unit range of energy and unit range of p
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FO Fl
T+ (n) =d Js P, (2u-1)e ™ I;(E,n) dp QB
r\o NO
Iin(n) = P (-2u-1)e” ™ I;(B,u) dp dE "
dEmelJ“l &
[o2]
Ji(E,p) number of particles per unit time per unit area incident
upon iPR element of shield with energy E and
angle cos™t i per unit range of energy and unit
Tange of
FO ML
=+ -
JIin(n) = Pp(2p-1)e © J;(E,un) du 4B
JEaxJo
FO PO .
T (n) = Pp(-2u-1)e”™ 3, (B,1) ap QB
LJEmax\u‘l

K; (E,1';p4,E;) proportion of particles incident upon 1% element
whose original energy is Ei and direction, By
scattered into energy E per unit range of E and
direction p Dper unit range of p

L
Kim e (n) = (2nl1) f@ jﬂ f Py (20-1)Bp 1 (21-1)e™™ Ky (B, 15Epay,ny) iy dy aB
EpaxJOUO
) A
k;n:(n) = (2n'+1) r rf By (2u-1)P, i (-2pg-1)e W Ky (B,15Bp05 kg ) Gy dp dB
Epax JOJ-1 .

P, (x) Legendre polynomial of degree n
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+
Pn(Zu—l)

P (-2p-1)

Q(E)
ql(E,E')

QZ(E:U;E':P')

S(E,M,Z;E',u')

7(E,z,E')

T(E,p,2z;E ,1t)

o(3)
F(J)

5(x)

25
P (2u-1) wn=>0
) 0 n<o
Py(-2p-1) p<o
) 0 >0
S
A(u)

proportion of particles with energy E' scattered into
state with energy E per unit range of E

proportion of particles with angle cos™L p! and
energy E! scattered into state with angle cos'l 18
and energy E per unit range of E per unit range
of u

1N Epey
=\[q qZ(E’p;E"’p")TO(E",H":ZiE':P') dE" au"
-1JO

proportion of particles with energy E' - incident upon
face of element reaching energy E per unit range E
upon penetrating to depth 2z for gp =0

proportion of particles with energy E' and angle

cos™1 k' dincident upon surface of layer reachin
energy E per unit range of E and angle cos™ u
Per unit range of p upon penetrating to depth =z

jth gpproximation to T

jth approximation to T

Emax
n E

thickness of layer

distance of point inside layer from the front face of
the layer

Direc delta function




26 NACA TN 2647

54 3 Kronecker delta

T verigble of Laplace transform

2] angle between direction of scattered particle and direc-
tion of particle before scattering

-0 colatitude measured with respect to normal to face of

shield upon which radiation is incident

A, coefficient of e J® in expansion M (u) = E By e~du

J

A(u) total mean free path

)‘j coefficient of E'j in expansion A(u) = z Xj E'j

' J

A (u) scattering mean free path

A8 cosine @

po cosine ®

&(z,n,un) Laplace transform of ¥ with respect to u

® longitude sbout normal to surface

CP: expansion coefficient in expression for ¢ in terms of
(2n41) Pr(22u-1)

¥(E,u,z) number of particles per unit time per umit area per
unit range of E per unit solid angle of energy E
and direction cos T i and location 2z divided by
A(u)

¥(u,p,z) number of particles per unit time per unit area per
unit range of u per unit solid angle of energy BE,
direction cos™l i, and location z divided by A u)

Q solid angle

A1l integrals for which no limits are specified are to be extended
over the entire range of the variable concerned.
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APPENDIX B

DERIVATION AND SIGNIFICANCE OF TRANSPORT EQUATION

The transport equation simply expresses the fact that any particle
entering a glven region must, in the steady state, be absorbed, be scat-
tered, or else leave the regilon unchanged, and that any particle leaving,
the region must, in the steady state with no intermnal sources, either
be replaced by a like particle entering the region or else be produced
when a particle with a different momentum is scattered. In order to
state this in mathematical terms, it is necessary only to consider the
balance within a region R bounded by & surface S. The following
contributions and losses occur:

The number of particles with energies between E and E+dE (where
E=Ep,ye" and dE = - E du) moving in directions lying within a cone
of solid angle dR around the direction specified by the unit vector T
which enter R +through the surface S per unit time is

- -
- AV n © dS du 4%
S

vhere d8 is a vector element of area. This holds because Xwﬁ is
the vector current density of particles per unit time per unit area per
unit solid angle per unit range of u.

The rate at which particles of this energy and direction disappear
within R is

¥ dv du 49
R

where dv is an element of volume. This follows from the fact that

the linear rate of decrease of the density of particles is simply the
density divided by the mean free path and that the time rate of decrease
of density is equal to the linear rate multiplied by the speed; but +this
last product is just .

The rate at which particles with other momenta are scattered within
R 8o as to achieve an energy between E an64 E+dE and g direction
wlthin the solid angle dR centered around n is
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u
j du:J‘dQ‘j dv 1[:(11',u',z)f(uo,u—u‘)h(u‘) du 4Q
(0] R

This may be seen as follows: h(u') £(ug,u-u') du d2 is the proportion
of particles either absorbed or scattered which originally have an energy
‘E' and a direction n' and which are scettered so as to achieve an
energy lying in the range between E and E+dE and a dir?ction lying
within the solid angle dRf centered around . Thus when this product
is multiplied by V¥ and integrated over all directions d4Q', over u!’
between O and u (f=0 for u < u' because of the assumed degrada-
tion of energy), and over R, the desired rate is obtained. A few other
remarks about f may be in order: (1) Because every scattered par-
ticle must attain some direction and energy, £ sabtisfies the equation

f desz £(pg,u-u') =1 (B1)

(2) The dependence of f upon u-u' results from the assumption of
classical elastic or quantum mechanical S-wave scattering (that is,
scattering symmetrical with regard to a coordinate system located at
the center of gravity of the system participating in the scattering
collision). (See reference 3; pp. 187, 188.)

The resulting equation for balance is:

-0 A(w) ¥(u,p,z) R - d8 = | vav
S R

-f dvj\“ du'| a@*¥(u’,u’,z) f(l-loyu"u') h(u') (B2)
R 0]

If the left side of equation (BZ) is converted to a volume integral by
Gauss's theorem and the integrands in the integrals over R occurring
in the equation set equal in view of the fact that R is arbitrary,
the following result is obtained:

)\(11) A V‘l‘(u:l-";z) + ¥

=j; aut| aery(ut ut,z) £(ugru-u’) nlu') (25)
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Because V¥ depends on position only through =z and because the com-
ponent of 2 in the z direction is cos 6 B Z-V“{J reduces to

cos 6 —g—q{ and equation (B3) becomes identical with equation (1).
z

Similarly, equetion (23) is obtained by writing ¥ as a function
of E rather than u and by assuming that a particle does not change

direction on scattering so that |[f(ug,u-u') h(u') du' becomes

g (E,E')8(u-p') aB
2n

. Equation (20) is the seme as equation (23)

except that in equation (20) £(pg,u-u') h(u') du' is replaced by

the more general function

[ql(E,E')B(u-u') +q2(E;u;E',u'):I -

2

The aq term represents all the scattering without angular deviation,
as before, and the q, term allows for an additional scattering process
which produces a change in direction.
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APPENDIX C

DERTIVATTION OF EQUATIONS (29)

It may be verified by direct substitution that the expressions for

0(0) gna (1) glven by equations (29) satisfy equation (28) subject
to condition (27). For values of j greater than one , the correctness
of equations (29 mey be checked by induction. Because the general

expression given for T(j) ‘is correct for J=1, 1t remains only to
show that, if equations (27) and (28) are used to compute p(31) on
the assumption that o(3) s given by equations (29), then the result-
ing expression for fﬂ(j"'l) agrees with that obtained from equa-

tions (29). The formal solution of equetions (27) and (28) for p(J+1L)

with 7(3) given is

~

' max -la E(J"'l))z -Q(E(J+l))g 1
T(J"‘l)(Eo,z,E(J'i‘l)) = QI(E(J"']-)’E(J))\[‘Z e [( :Ill T(J)(E(O),Q,E(J)) ar dE(J)
o] [o]

13
(c1)

Here T(J) stands for the function specified in equations (29); when the
explicit substitution is performed, the right side of equ?.tg_on (c1)

‘takes the form of a multiple integral with respect to dE(1

The integrand of this multiple integral may be written, upon integration
with respect to ¢, as

| -q(s() 2
() J o (el gledyl 2 e -
. dE’ ;10 q (E EY) %;5.;10 Q(E(r))-Q(E(n)) i

r#n

e-q(E(J"'l))ﬁ
(c2)

i J
+ n

=0 r= (r) (n) (n) (3+1)
01’1713 Q(EY) - a(=® )][Q(E ) - Q(E )]

In order that this result agree with equation (29) it is necessary
only that the following relation hold:

. . . ae(3-1),

2386
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B
%o rr;gg [t -Q(E(n))]l[Q(E(n)) -a(e(3)))

— J 1 )
B rl;IO Q(E(r)) - Q(E(J"'l)) (c3)

Equation (03) 5 in turn, is valid if the following expression vanishes:

9 @)y - q(r(3t1)y
I -1
n=0 r=0 Q(E(r)) - Q,(E(n))

rfn

Equation (04), however, is just a polynomial of degree (j—l) or less
in Q(E(j"'l)) vwhich vanishes whenever Q(E(j"'l)) takes on one of the

values Q(E(O)), C e e Q(E(J)) and, hence must be identically zero.
This completes the verification of equations (29).

(ca)
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